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The inclusion of second derivatives of IFc[ in the least-squares refinement of crystal structures is discussed. 
By using a test case it is shown that convergence is reached in fewer cycles than with usual methods, although 
the total computing time is about the same. Standard deviations of parameters are a better approximation 
to the true values. 

In the usual derivation of the normal equations in the least- 
squares refinement of crystal structures (e.g. Stout & Jensen, 
1968) second derivatives of IFcl are neglected and the equa- 
tions are written: 

with 
k x  = v 

a,j=~,wr 01Felt 01Eel, 
ep, epj 

xj=Apj  

vt = ~rw~AF, OlFct, --e~," 

If one includes second derivatives, the atj terms become 
(Cruickshank, 1952; Waser, 1963): 

a,j=~rWr (alF~l~ 01Eel, _ 0ZlFclr J F , ) .  
\bOp, ........ " --opj Op,Opj 

In the least-squares minimization of non-linear functions in 
numerical analysis the two expressions for the atj terms 
correspond respectively to the Newton-Gauss  (NG) and 
the Newton-Raphson  (NR) methods. The N G  method is 
based on the assumption that the observable quantities are 
a linear function of the parameters, the second derivatives 
being therefore zero. In crystal-structure analysis, with a 
highly non-linear dependence of the structure factor upon 
the parameters, it is reasonable to expect that the N R  ex- 
pression would be a better approximation than the N G  one, 
particularly far from the minimum where the AF's are not 
negligible. 

Unfortunately the general expression for c321F~l/Op:gpj is 
rather unwieldy. With [F~I=(A2+B2) 1/~ we have: 

O'IFo  _ Wcj_.2 ( OIF l + eA_ 
Op,Op.,, Op, Opj Opt "6qp.i 
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+ OP,OP------7 + -~Pt'-~-fPj + 'Op,Opj ] 

and its evaluation would require considerable effort. 
However, in the case of a centric structure the expression 

simply reduces to the evaluation of the term 02A/OptOpj, 
which gives non-zero contribution to the A matrix only for 

blocks about the diagonal involving correlations among 
parameters of the same atom (4 x 4 or 9 x 9 blocks according 
to whether the refinement is isotropic or anisotropic). Fur- 
thermore it should be pointed out that with careful pro- 
gramming, the evaluation of 02A/gptOpj does not require 
much additional computing time. It is interesting to note 
that in the case of refinement of Fo 2, the terms containing 
the second derivatives are non-zero everywhere in the ma- 
trix of the normal equations, even in the centric case. 

A Fortran program, which is essentially a modification 
of ORFLS (Busing, Martin & Levy, 1962) to include second 
derivatives, has been written for an IBM 1130 computer and 
tested on the structure of fl-fumaric acid (Bednowitz & 
Post, 1966). fl-Fumaric acid was a logical choice because it 
is a centric structure and there are only four atoms to vary, 
not including hydrogens, which allowed the problem to be 
tackled by full-matrix least squares on a small capacity 
machine. With isotropic temperature factors and without 
the hydrogen contribution, the minimum was at an R index 
of 16.6 % (weighted R =  16.2 %). The atomic parameters at 
the minimum are reported in Table 1. Random shifts, as 
increasing multiples of the standard deviations, were ap- 

Table 1. Atomic parameters and standard deviations for 
fl-fumaric acM (R = 16-6 %) 

C(1) 

c(2) 

0(1) 

0(2) 

e.s.d. (x  l0 s) 
Coordinates NG NR 

x 0.40566 245 256 
y 0"37909 170 169 
z 0"39874 212 218 
B (/~z) 2-80 

x 0"45440 221 230 
y 0"21830 156 155 
z 0"44995 189 195 
B (/~2) 2-27 

x 0-27125 179 188 
y -0"00475 127 124 
z 0"25647 154 159 
B (A 2) 3.45 

x 0.68347 183 194 
y 0"32398 129 128 
z 0"70222 158 164 
B (A s) 3.3 8 
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Cycle 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Table 2. Comparison between the NG and NR refinement methods* 

Rw (run 1) R,~ (run 2) Rw (run 3) Rw (run 4) 

NG NR 
28.0 % 28.0 % 
18.9 18.6 
16.3 16.2 
16.2 16.2 
16-2 

NG NR NG NR NG 
48.6 % 48.6 % 55-8 % 55.8 % 51-5 % 
34.5 28.0 45.4 39.9 45.7 
23-7 16-8 35.1 28.4 41.9 
16.4 16.2 27.7 21.9 39-8 
16.2 16.2 22-4 16.4 38-9 
16.2 16.6 16-2 38.6 

16.2 16.2 38.4 
16.2 38.4 
16.2 38.3 

false 
minimum 

NR 
51-5% 
44"5 
40"2 
39"1 
38-6 
38"4 
38"3 
false 

minimum 

* Mean atomic displacements were: 0.10, 0.24, 0.36 and 0.37 A, respectively for runs 1, 2, 3, and 4. 

plied to the atomic coordinates using a random-number 
generator program. With the temperature factors fixed at 
their values at the minimum, the twelve atomic coordinates 
and an overall scale factor were refined in subsequent cycles. 
Refinement was halted when all the parameter shifts were 
less than 10 -4 . Unit weights were used in all the calculations. 

From the results reported in Table 2 it can be seen that 
the inclusion of second derivatives allows convergence to be 
attained in fewer cycles than with the usual NG technique 
and this is more evident the further one starts from the 
minimum. However, the computing time per cycle was 4.56 
and 3.42 rain for the NR and the NG method respectively. 
There is no evidence that one of the two methods can con- 
verge from further away from the minimum than the other 
one. 

Standard deviations on atomic coordinates, calculated 
from the diagonal terms of the inverse matrix, are slightly 
different in the two cases (Table 1). Of course, standard 

deviations calculated with the inclusion of second deriva- 
tives are a better approximation to the true values. 

We would like to thank Dr A. Sabatini for helpful dis- 
cussions and Professor L. Sacconi for his interest. 
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White radiation neutron-diffraction techniques. By S. A. WILSON and M. J. COOPER, Materials Physics Division, 
A.E.R.E. Harwell, Berkshire, England 

(Received 10 July 1972; accepted 11 August 1972) 

In a recent paper Hubbard, Quicksall & Jacobson [Acta Cryst. (1972). A 28, 236-245] describe a highly efficient 
white-radiation neutron-diffraction technique. The present note discusses some of the problems which arise 
from the use of such techniques in the light of recent measurements at Harwell and emphasizes that, because 
of these problems, structure determination using white-beam techniques is less reliable than that possible 
using conventional monochromatic beam techniques. 

In a recent paper Hubbard, Quicksall & Jacobson (1972) 
describe a highly efficient neutron-diffraction technique 
using a white-radiation beam incident on the sample. They 
state that this technique dramatically increases both count- 
ing precision and data collecting rates over conventional 
monochromatic beam techniques. However, the usefulness 
of the technique depends on the reliability with which the 
data can be interpreted and thus on the accuracy with 
which systematic effects can be accounted for, particularly 
as these are likely to be a more serious problem when meas- 
urements extend over an appreciable range of wavelength. 
The purpose of this note is to comment on the use of such 
techniques in the light of white-radiation neutron-diffrac- 

tion measurements made at Harwell specifically to study 
the importance of these problems. 

Data-collection rates are much higher for white-radiation 
techniques because of the increased intensity available from 
the spectrum of wavelengths present in the beam, the in- 
herent integration of the intensity of a Bragg reflexion over 
a range of wavelength and the possibility of simultaneous 
measurement of a large number of reflexions. A given pre- 
cision in the Bragg-intensity measurements can thus be 
achieved much more rapidly than with conventional mono- 
chromatic beam techniques. However, the fact that many 
of the measurements consist of a summation of the intensity 
over a number of orders of the fundamental Bragg reflexion 


